Unfolding Genus-2 Orthogonal Polyhedra with Linear Refinement
نویسندگان
چکیده
We show that every orthogonal polyhedron of genus g ≤ 2 can be unfolded without overlap while using only a linear number of orthogonal cuts (parallel to the polyhedron edges). This is the first result on unfolding general orthogonal polyhedra beyond genus-0. Our unfolding algorithm relies on the existence of at most 2 special leaves in what we call the “unfolding tree” (which ties back to the genus), so unfolding polyhedra of genus 3 and beyond requires new techniques.
منابع مشابه
Grid Vertex-Unfolding Orthogonal Polyhedra
An edge-unfolding of a polyhedron is produced by cutting along edges and flattening the faces to a net, a connected planar piece with no overlaps. A grid unfolding allows additional cuts along grid edges induced by coordinate planes passing through every vertex. A vertexunfolding permits faces in the net to be connected at single vertices, not necessarily along edges. We show that any orthogona...
متن کاملUnfolding Orthogrids with Constant Refinement
We define a new class of orthogonal polyhedra that can be unfolded without overlap with constant refinement of the gridded surface.
متن کاملUnfolding Orthogonal Polyhedra with Quadratic Refinement: The Delta-Unfolding Algorithm
We show that every orthogonal polyhedron homeomorphic to a sphere can be unfolded without overlap while using only polynomially many (orthogonal) cuts. By contrast, the best previous such result used exponentially many cuts. More precisely, given an orthogonal polyhedron with n vertices, the algorithm cuts the polyhedron only where it is met by the grid of coordinate planes passing through the ...
متن کاملEpsilon-Unfolding Orthogonal Polyhedra
An unfolding of a polyhedron is produced by cutting the surface and flattening to a single, connected, planar piece without overlap (except possibly at boundary points). It is a long unsolved problem to determine whether every polyhedron may be unfolded. Here we prove, via an algorithm, that every orthogonal polyhedron (one whose faces meet at right angles) of genus zero may be unfolded. Our cu...
متن کاملModelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 33 شماره
صفحات -
تاریخ انتشار 2017